Characterization of a factor IX variant with a glycine207 to glutamic acid mutation.
نویسندگان
چکیده
Factor IXTaipei9 is a factor IX variant from a hemophilia B patient with reduced levels of circulating protein molecules (cross-reacting material reduced, CRM). This variant contained a glycine (Gly) to glutamic acid (Glu) substitution at the 207th codon of mature factor IX. The functional consequences of the Gly-->Glu mutation in factor IXTaipei9 (IXG207E) were characterized in this study. Plasma-derived IXG207E exhibited a mobility similar to that of normal factor IX on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its specific activity was estimated to be 3.5% that of the purified normal factor IX in a one-stage partial thromboplastin time assay (aPTT). Cleavage of factor IXG207E by factor XIa or factor VIIa-tissue factor complex appeared to be normal. When the calcium-dependent conformational change was examined by monitoring quenching of intrinsic fluorescence, both normal factor IX and IXG207E exhibited equivalent intrinsic fluorescence quenching. Activated factor IXG207E (IXaG207E) also binds antithrombin III equally as well as normal factor IXa. However, aberrant binding of the active site probe p-aminobenzamidine was observed for factor XIa-activated factor IXG207E, indicating that the active site pocket of the heavy chain of factor IXaG207E was abnormal. Moreover, the rate of activation of factor X by factor IXaG207E, as measured in a purified system using chromogenic substrates, was estimated to be 1/40 of that of normal factor IXa. A computer-modeled heavy-chain structure of factor IXa predicts a hydrophobic environment surrounding Gly-207 and this Gly forms a hydrogen bound to the active site serine-365. The molecular mechanism of the Gly-->Glu mutation in factor IXTaipei9 might result in the alteration of the microenvironment of the active site pocket which renders the active site serine-365 inaccessible to its substrate.
منابع مشابه
Molecular Characterization of the Factor IX Gene in 28 Iranian Hemophilia B Patients
Background: Heterogeneous mutations in the human coagulation factor IX gene lead to an X-linked recessive bleeding disorder known as hemophilia B. The disease is distributed worldwide with no ethnic or geographical priority. Materials and Methods: The aim of this study was to characterize the factor IX gene mutations in 28 unrelated Iranian hemophilia B patients. Polymerase chain reaction (PCR)...
متن کاملMolecular Defect in Factor
A genomic DNA library and the enzymatic DNA amplification technique were used to isolate human factor IX coding sequences of a hemophilia Bm variant. factor lX . A point mutation that resulted in the substitution of a glutamine (CAG) for an arginine (CGG) at amino acid 180 was found in exon VI of the factor IX gene (G -p A at nucleotide 20519). This mutation alters the carboxy terminal cleavage...
متن کاملModification of the N-terminus of human factor IX by defective propeptide cleavage or acetylation results in a destabilized calcium-induced conformation: effects on phospholipid binding and activation by factor XIa.
The propeptide of human coagulation factor IX (FIX) directs the gamma-carboxylation of the first 12 glutamic acid residues of the mature protein into gamma-carboxyglutamic acid (Gla) residues. The propeptide is normally removed before secretion of FIX into the blood. However, mutation of Arg-4 in the propeptide abolishes propeptide cleavage and results in circulating profactor IX in the blood. ...
متن کاملبررسی تنوع ژنتیکی مارکر rs438601در جمعیت اصفهان: یک مارکر آگاهیدهنده در تشخیصهای مولکولی هموفیلی B
Introduction: Hemophilia B is an X-linked recessive genetic disease caused by mutations in the coagulation Factor IX gene. Mutations in the Factor IX gene result in dysfunction or deficiency of coagulation factor of IX. Direct mutation analysis involves the ideal method for molecular diagnosis of the disease. However, due to the high number of identified mutations in the gen, the lack of a comm...
متن کاملMolecular defect in factor IXHilo, a hemophilia Bm variant: Arg----Gln at the carboxyterminal cleavage site of the activation peptide.
A genomic DNA library and the enzymatic DNA amplification technique were used to isolate human factor IX coding sequences of a hemophilia Bm variant, factor IXHilo. A point mutation that resulted in the substitution of a glutamine (CAG) for an arginine (CGG) at amino acid 180 was found in exon VI of the factor IX gene (G----A at nucleotide 20519). This mutation alters the carboxy terminal cleav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 84 6 شماره
صفحات -
تاریخ انتشار 1994